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e To measure physiologic aspects of autonomic
control

e To quantify statistical features of time series

* To characterize the dynamical properties of the
underlying control systems
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* To introduce the concept of fractals for spatial
and temporal structures

e To introduce two simple measurements of fractal
objects and processes

e Todiscuss clinical implications of fractal
dynamics in heart rate time series



A fractal object is self-similar, i.e., small subsets of
the object resemble (statistically) the whole. Fractal
objects do not possess a characteristic (single)
spatial and temporal scale



e Spatial structures: tree, lung, cordl, ...

e Tempora dynamics.; weather temperature, music,
volatility of stock prices, ...

o Symbolic sequences. DNA, computer codes, ...



Fractal Self-Organization:
Purkinje Cellsin Cerebellum
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Quantifying fractal with fractal dimension or self-
similarity parameter

* Fractal dimension is more suitable to
describe how a geometrical object fills up the
space from small to large scales

o Self-similarity parameter can be used to
guantify fractal processes (time series)



Example 1: Box counting method to measure
fractal dimension






N(50) = 12 N(25) = 26



T 14 21 28

L = size of ruler or grid
IN = nmber laid down




log L

00 042 084 127 169 212 254 297 330 382 424
L. = aize of ruler or grid M= 1180 03 L#
M = mumber laid dow




Example 2: Detrended fluctuation analysis
(DFA) to measure a self-similarity parameter
of fractal processes



Detrended Fluctuation Analysis (DFA)
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Peng et al. Chaos 1995: 5; 82.
> 500 citations




(a) DFA Analysis

® Healthy subject, c=1.04
o Randomized control, oe=0.51




® Healthy Young
¢ Healthy Elderly
A Heart Failure
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Ho, Moody, Peng, Mietus, Larson, Levy, Goldberger.
Circulation 1997; 96: 842-848
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SHR DFA Ctris CHF
High High 17 3

High Low 8 6
Low High 9 5
- Low Low 7 14

3 4 5
Time from Holter (years)

Ho, Moody, Peng, Mietus, Larson, Levy, Goldberger.
Circulation 1997; 96: 842-848



Fractal Correlation Properties of R-R Interval Dynamics
and Mortality in Patients With Depressed Left Ventricular
Function After an Acute Myocardial Infarction

Heikki V. Huikuri, MD; Timo H. Mikikallio, MD:; Chung-Kang Peng, PhD; Ary L. Goldberger, MD;
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Cumulative Survival

Log Rank 44.3
p<0.001
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Beyond Fractal: Multifractal Analysis
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A Brief Overview of Multifractal Time Series

Luis Amaral

In the Exploring Patterns in Nature tutorials, we observed how disordered, irregular, fractal patterns can be quantified in
terms of their spatial fractal dimension. Here we study fractal (and multifractal) patterns of a different sort: patterns in time.

This overview attempts to give a short operational review of multifractality in time series. For this reason, formal definitions
and derivations are not discussed; see Refs. 1-4 for more in-depth reviews.

Part 1: Fractal behavior in time series

Part 2: Using wavelets to detect singular behavior

Part 3: The fractal dimension of the singular behavior

Part 4: The singularity spectra of multifiractal siegnals

Part 5: What one learns from the singularity spectra of multifractal signals
Part 6: Multifractality of healthy human heart rate

Bibliography

Software for multifractal analysis of time series is available here.
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e Heart rate time series exhibit fractal (self-
similar) properties

» \We can quantify the exponents of fractal
scaling

e These exponents are altered in disease and
cellge



