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Objectives

Effects of sympathetic and parasympathetic
Innervation on ion currents driving the slow action
potentials of the sinus node.

Physiologic mechanisms for the major periodicities
In heart rate variability.

Importance of the time delays in sympathetic and
parasympathetic signal transduction for heart rate
variability.

Heart rate spectral analysis as indicator of cardiac
autonomic balance.
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Heart rate i1s almost constant in denervated

hearts and intrinsic heart rate is ~100 bpm
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The slow action potential
In the sino-atrial node

* The slow response action

potentials in the SA node, are
characterized by a slow,
spontaneous rise
(depolarization) in the
membrane potential during
phase 4 of the action potential.

Once a threshold level is
reached, phase 0 of the next
action potential is initiated.

The important currents are

lco 11 @nd 1.

|, causes the depolarization,
|, causes the repolarization,

l; (mainly Na*) causes the slow
depolarization in phase 4.
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Sympathetic activation increases
heart rate by increasing I,
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Parasympathetic M2-muscarinic receptor

stimulation increases I, and decreases I; and I,
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Summary: Autonomic Control of Heart Rate
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Physiological Origin of Heart Rate Variability

e Day-night periodicity
e Respiratory sinus arrhythmia
e 10s rhythm and slower fluctuations
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Day-night Periodicity
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_ sympathetic nerve activity
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MMW\W\W and electrodes in a

conscious rabbit.

* Note the strong day-night
periodicity in heart rate and
mean blood pressure that
are accompanied by
similar oscillations in

sympathetic nerve activity.
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Day-night Periodicity

« Day-night periodicity of heart rate Is related to
circadian changes in autonomic nerve activity.



Physiological Origin of Heart Rate Variability

e Day-night periodicity
e Respiratory sinus arrhythmia
e 10s rhythm and slower fluctuations



Respiratory Sinus Arrhythmia

Respiratory sinus arrhythmia 25 mm/sec
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e Tachycardia during inspiration

e Bradycardia during expiration.



= espiratc A -

= BX

File Edit Calculate Miew Help

|G| | = > B 11 [ 7 ||

TR

ss.neart rate

a \A/ v
62.4 \/
0:43:405 0,617

chi: 00:0

<

I |=
S
ol e




Inspiration Expiration

g . P

i)
e VVenous return e \Venous return {

P

thorax thorax



Venous return to the heart: respiratory pump
(alternating changes in intrathoracic and
abdominal pressure)

Venous blood flow velocity




Frank-Starling Mechanism

 During inspiration, greater
venous return to the heart
(preload) causes an
Increase In stroke volume
: (SV).

STROKE | - ok e During expiration, reduced
5 venous return to the heart
causes a decline in SV.

» According to:
BP =SV *HR * TPR
blood pressure will
fluctuate with respiration.
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Cardiopulmonary and baroreceptors detect respiratory
changes in cardiac filling and arterial pressure

Cardiopulmonary receptors
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Modulation of respiratory sinus arrhythmia by
the Bainbridge and baroreceptor reflexes

* Respiratory sinus arrhythmia is characterized by a tachycardia
during inspiration and a bradycardia during expiration.

» Increased cardiac filling during inspiration elicits a tachycardia
via the Bainbridge reflex that promotes respiratory sinus
arrnythmia.

* Increased cardiac filling during inspiration elicits an increase in
stroke volume (Frank-Starling mechanism) and blood pressure.
This activates the baroreflex that opposes the tachycardia
caused by the Bainbridge reflex. Thus, the baroreceptor reflex
limits respiratory sinus arrhythmia.

e The intensity (amplitude) of respiratory sinus arrhythmia can be
seen as the balance of the Bainbridge reflex and the
baroreceptor reflex.



Central respiratory and sympathetic oscillators
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* Anesthetized, paralyzed, vagotomized, and ventilated cats.

* Pneumothoracotomy to prevent BP variability caused by changes in
Intrathoracic pressure.

* Hyperventilation (right) silenced the central respiratory oscillator
(phrenic nerve activity lost) but not the central sympathetic oscillator
(oscillations in cardiac SNA maintained).

* Independent respiratory and sympathetic oscillators are normally
entrained by peripheral inputs (cardiopulmonary receptors,
baroreceptors etc.) to operate at the same frequency.

Barman SM and Gebber GL, Am J Physiol 231:1601-1607, 1976



Cardiac vagal motoneurons (N. ambiguus)
are coupled to the respiratory oscillator
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* Placement of recording electrodes » Firing rate of CVM follows firing rate
In CVM in the N. ambiguus. of the phrenic nerve.

 Location verified by stimulation of * This respiratory rhythm persists
peripheral vagal nerve fibers. even If the ventilator is switched off.

Rentero N et al., Am J Physiol 283:R1327-R1334, 2002



Respiratory Sinus Arrhythmia

The exact mechanisms causing respiratory sinus
arrhnythmia are not fully understood.

Some studies suggest the existence of independent
respiratory and autonomic (sympathetic and
parasympathetic) oscillators in the brainstem.

The central respiratory oscillator is linked to
sympathetic and parasympathetic centers in the
brainstem.

The Bainbridge reflex and the baroreceptor-heart rate
reflex normally entrain cardiac autonomic nerve
activity to the rhythm of the central respiratory
oscillator.



Physiological Origin of Heart Rate Variability

e Day-night periodicity
e Respiratory sinus arrhythmia
e 10s rhythm and slower fluctuations



10s oscillation In heart rate
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Negative feedback systems have an
Intrinsic tendency to oscillate
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Feedback Oscillations in Arterial Blood Pressure
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BP control by the baroreceptor reflex
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Blood pressure control by the
local endothelial NO system




Blood pressure control by the
renin-angiotensin system
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Time Delays in BP control

Baroreflex Endothelial NO Renin-Angiotensin
system System

Response time of Sensing of shear Reduction of sodium

baroreceptors stress concentration in the

distal tubulus

Afferent nerve Release of NO from Renin release

conduction endothelial cells

Central processing Diffusion of NO to Formation of ANG |
VSMC

Efferent nerve Formation of cGMP Formation of ANG Il

conduction

End-organ responses | End-organ response | End-organ response to
(e.g., vasoconstriction) | (vasodilatation) ANG I (e.q.,
vasoconstriction)

Different time delays cause regulatory oscillations at different frequencies !



Link between blood pressure variability

and heart rate variability
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Neural Control of the Cardiovascular System

Sympathetic afferents
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Malliani A et al., Circulation, 84:482-492, 1991



Spectral analysis of RR intervals and
sympathetic and vagal nerve discharges in a cat
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Nerve transduction to the sinus node

e Cardiac sympathetic and parasympathetic neuronal
activity contains frequency components at:

— The heart rate
— The respiratory rate

— The resonance frequency of the
baroreceptor-heart rate reflex

— The resonance frequencies of
slower blood pressure regulating systems

e Does the sinus node respond to all these frequencies
with corresponding fluctuations in heart rate?



Periodic stimulation of the PVN In conscious rats

The PVN projects to sympathetic and parasympathetic
preganglionic neurons

baseline recording PVN stimulation at 0.50 Hz
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Stauss HM et al., Am J Physiol 273:H786-H795, 1997



HR responses to PVN stimulation in rats

Stimulation frequencies from 0.05 Hz to 2.0 Hz
elicited corresponding HR oscillations
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HR responses to PVN stimulation In rats

« Sympathetic modulation of HR is limited to frequencies below the

respiratory frequency.
« Parasympathetic modulation of HR can operate at frequencies up to the
respiratory frequency.

10
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Stauss HM et al., Am J Physiol 273:H786-H795, 1997




Summary: Autonomic Control of Heart Rate
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Levick JR, An Introduction to Cardiovascular Physiology, 2" edition, 1994




Summary

Intrinsic heart rate is almost constant and ~100 bpm.

Sympathetic modulation of heart rate depends on synthesis of the
second messenger cAMP.

Parasympathetic modulation of heart rate depends on opening of
K,ch-channels and inhibition of cAMP.

The major periodicities in heart rate variability include:
— Day-night periodicity
— Respiratory sinus arrhythmia
— 10s rhythm and slower fluctuations

Sympathetic and parasympathetic nerve traffic contains frequency
components at the respiratory frequency.

However, only parasympathetic signal transduction is fast enough to
generate respiration-related heart rate variability.



Part ||

 Perturbations of the sympathetic
nervous system

e Autonomic blockades

e Autonomic balance (LF/HF ratio)
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Interventions that increase sympathetic nerve
activity increase LF spectral power of HR

o Upright tilt

* Application of the vasodilator nitroglycerin
e Coronary artery occlusion

 Exercise

 Mental arithmetic stress



Effect of 90° tilt In a young human subject
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Ficure 3. R-R interval series,
i.e., tachogram at rest and during
passive upright 90° tilt. On the auto-
spectra (bottom panels), two clearly
separated low- and high-frequency
components are present at rest. Dur-
ing tilt, the low-frequency compo-
nent becomes preponderant.




Application of nitroglycerin before and

after cardiac sympathectomy in a dog
control QAT nitroglycerin

150
@@ FiGure 8. Autospectra of R—-R inter-
val variability of a conscious healthy

dog in control conditions (left panels)

and during an 1V infusion of nitroglycer-

in to excite the sympathetic outflow. The
0.20 €/b top panels were obtained with cardiac
LI Hzeq TETVES intact, the bottom panels after
full recovery from bilateral stellectomy.
Note the presence of a large low-fre-
quency component during nitroglycerin
infusion only in the neurally intact situa-
tion.
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HR and BP variability responses to

coronary artery occlusion and exercise in dogs
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HR and BP variabllity responses to
mental arithmetic stress
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Perturbations of the SNS

« All interventions that enhance sympathetic nervous
system activity also increase LF spectral power of
heart rate (or RR interval).



Cardiac autonomic receptor blockades

* Ganglionic blockade.
o Parasympathetic (muscarinic) blockade.
« Sympathetic [3,-adrenergic receptor blockade.
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Cardiac Autonomic Receptor Blockades
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BP and HR response to atropine in a
human subject
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Spectral analysis of pulse intervals during
atropine infusion in a human subject
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Elghozi JL et al., Autonomic Neuroscience: Basic and Clinical 90:116-121, 2001




The effect of autonomic receptor blockers
depends on baseline conditions
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% change in spectral power
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Cardiac Autonomic Receptor Blockades

o Parasympathetic (muscarinic) receptor blockade
reduces LF and HF spectral power of heart rate.

« Sympathetic [3,-adrenergic receptor blockade causes
an increase or decrease in LF spectral power of heart
rate, depending on baseline levels of cardiac
sympathetic tone.

« Sympathetic [3,-adrenergic receptor blockade does
not affect HF spectral power of heart rate.
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Autonomic Balance — LF/HF ratio

Low Frequency High Frequency | ow Frequency:

Sympathetic and
Parasympathetic

High Frequency:
Only parasympathetic

LF/HF ratio:

Greater values reflect
sympathetic
dominance.

Smaller values reflect
parasympathetic
dominance.




Summary Part Il

o Perturbations of the sympathetic nervous system are
reflected in changes in LF (~0.1 Hz) spectral power of
heart rate.

e Cardiac autonomic blockade experiments
demonstrated that:

— LF spectral power of heart rate is modulated by
the sympathetic and parasympathetic nervous
system.

— HF spectral power of heart rate is modulated by
the parasympathetic nervous system only.

* The ratio of LF/HF spectral power of heart rate
reflects cardiac autonomic balance.



