Chapter 3

Modeling Random Motion

WHAT DOES “RANDOM” MEAN? Think carefully before you answer!
The definition may not be as obvious as you think.

Q3.1: After checking the dictionary definition,
consider the following four statements:

The result of a coin flip is not random, because
there are only two possible outcomes. True or
False?

The result of rolling a 6-sided die is not ran-
dom, because there are only six possible out-
comes. True or False?

Whether I win the state Lottery or not ¢s ran-
dom, because there are so many people playing
the Lottery at the same time. True or False?

The weather is random, because so many con-
ditions affect the weather that we cannot pre-
dict it. True or False?

The main theme of this book is the study of how order grows out of
randomness. Every structure in your body grows and every process in
your body takes place in the presence of randomly-agitated molecules.
Yet instead of being torn apart by this randomness, we survive. We
even thrive on the randomness of nature. How can this be? Before we
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34 CHAPTER 3. MODELING RANDOM MOTION

can begin to answer this question, we must study randomness itself,
and details of the staggering, zigzag paths that atoms and molecules
execute all around us.

Can order grow out of randomness? Think about the following
question:

Q3.2: Consider a group of 20 people. We want
to divide the group into two groups, group A
and group B. Each group should have 10 mem-
bers. Now flip a coin for each person: heads,
the person goes to group A; tails, the person
goes to group B. Will the people end up evenly
divided, ten in each group? Could they all end
up in one group? Which of these results is more
likely?

3.1 Measuring Randomness?

Is the present always influenced by the past? Suppose you are flipping
a coin and, by chance, flip three heads in a row. Does flipping three
heads in a row affect the next flip—the fourth flip—or not? Is the
fourth flip more likely to be another head? Or is the fourth flip less
likely to be a head?

e Do you believe in “winning streaks,” meaning that three heads in
a row is more likely to lead to a head on the next flip? Why do
you believe in winning streaks?

e Or do you expect your “luck to run out,” meaning that three
heads in a row is more likely to be followed by a tail on the next
flip? Why do you believe that your luck can run out?

e Or do you expect equal chances of getting a head or a tail on the
next flip, independent of what happened before? Why do you
believe that the next flip is independent?
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HandsOn 9: Lottery Game

Flip a coin over and over again until you get three heads in a row. Now
choose one of these strategies and stick to it.

e Strategy #1: If you believe in a winning streak, bet that the next
flip will be a head.

e Strategy #2: If you believe in luck running out, bet that the next
flip will be a tail.

e Strategy #3: If you believe the next flip is random, bet on heads
the first time, bet on tails the next, and so forth.

Now flip the coin a fourth time. How did it come out? Did you win
or lose?

Again, flip the coin until you get three heads in a row, then make
another bet, using the same strategy. Assume that a win brings you
$1.00 and a loss costs you $1.00. Carry out this procedure again and
again. Keep track of how much “money” you win or lose.

Q3.3: Can we speed up this process? Suppose
you flip three different coins at once by shaking
them in your cupped hands and throwing them
on the table. Then just look to see if all three
are heads. If not, shake them up and throw
them down again and again until all three do
come up heads. Then flip a fourth coin by hand
and see if you win or lose according to your cho-
sen strategy. Discuss the following question:
Do you expect that this will give the same re-
sult as flipping a fourth time after the same
coin has come up heads three times in a row?

Now move on to the computer program called Winning Streak?
This time the computer program allows you to bet on the outcome of a
coin-flip after four coins in a row land on the same side (four heads or
four tails). With the computer flipping coins, you can test your strategy
faster than you could flipping coins by hand. What is the result?

Winning
Streak is also
available as a
Java applet.
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Is your strategy a winner? or a loser? Or do you break even? If your
friends are doing the same activity, pool your results in order to compare
the success rates of different strategies. Continue your discussion until
there is general agreement that (i) winning streaks exist, (ii) losing
streaks exist, or (iii) the next flip cannot be predicted: each flip is
random.

3.2 Observed Distributions

No one can say with certainty what will happen next in a random
process such as a coin flip. Even so, some kinds of predictions are
possible and useful. If you flip 10 coins, about how many of them do
you expect to come up heads? Is it possible that all 10 will come up
heads? Is 10 heads in a row likely? Is it possible that all 10 will come
up tails? Is 10 tails in a row likely? To start answering these questions,
carry out the following activity.

Q3.4: Suppose one thousand students are
each given one penny. Each student flips his
or her penny ten times and records the num-
ber of heads. How many out of 1000 students
will flip 10 heads, how many will flip 9 heads,
how many flip 8 heads, and so on? Guess the
answers to these questions and fill in a copy of
Table 3.1. Be prepared to describe the reason-
ing behind your guesses.

HandsOn 10: Coin Flipping

Now let’s find out what is the real outcome of flipping a coin ten times.
If you are using this book in a classroom setting, work in groups of two
or three. Save time by “flipping” ten coins at once: Shake up ten coins
between your cupped hands and throw them on the table. Count the
number of heads and report this number to the group member who is
keeping record. Shake up the ten coins and drop them again. Again
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Table 3.1: Guess the results of 10 flips by each of 1000 students. Sketch
your prediction by drawing a bar graph or histogram on a copy of Figure

3.1

No. of Heads

No. of Students
(out of 1000)

10
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count the number of heads and report this number. Each group does

this ten times.

coin flip?

Q3.5: Does throwing down ten different coins
give the same results as flipping a single coin
ten times? What assumptions do you make
in answering this question: assumptions about
whether different coins are identical or not and
assumptions about the independence of each

Now combine the results for all the groups in the class. Have some-
one make a graph like the one in Figure 3.2 on the board. Place a large
X on the graph for the result of each trial, stacking the X’s on top of

one another.




38 CHAPTER 3. MODELING RANDOM MOTION

> <

Number of Students

> X

| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
1 2 3 4 5 6 7 8 9

10

Figure 3.1: Bar graph (a simple histogram) of number of students vs.
number of heads to be completed when the “process” of flipping coins
is completed. Make your own scale (divisions) on the vertical axis.

Q3.6:  Meet with your group and discuss the
results plotted on the combined graph. Do they
look like what you predicted? Is the graph un-
even in shape? Why or why not? What would
the graph look like after 1000 trials?

Q3.7:  Did certain numbers of heads occur
more often than others?

Q3.8: What number of heads is the most likely
to occur? What fraction of the time does that
actually happen?

Q3.9:  Were there any trials that resulted in
zero heads or ten heads?
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Figure 3.2: One possible histogram of the number of heads when 10
coins are flipped in 50 trials. Each X represents the result of one trial.

Q3.10:  Why is the distribution lopsided? If
we did this again, could the new distribution
be lopsided the other way? Why or why not?

Q3.11: Based on this activity, would you pre-
dict the same histogram for 1000 trials as you
guessed earlier? If not, what would you pre-
dict the histogram will look like for 1000 trials?
Make new entries to the right of your copy of
Table 3.1. In general, what do you expect will
happen as the number of trials is increased?
Would the distribution remain lopsided? Make
a guess before going on to the computer activ-
ity where you will able to verify your predic-
tion.

END ACTIVITY




40 CHAPTER 3. MODELING RANDOM MOTION

SimuLab 3: Wholesale Coin Flipping

Random Walk is a program that uses a computer to do our ten-
penny flip thousands of times faster than we can. The computer is
programmed so that “heads” and “tails” are equally likely to occur.
The computer also plots the results.
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Figure 3.3: Bar graph (histogram) showing number of heads when 10
coins are flipped repeatedly.

1. Start the Random Walk program, which begins with the coin-
flipping game (Figure 3.3)

2. Click on the Flip button to flip one coin at a time. Click Flip
again. And again. Repeat until you have flipped ten coins. Study
the numbers at the bottom and the top of the graph: What is
being recorded?

3. Now repeat the process, but this time click Go to have the com-
puter flip coins automatically, one after the other. Notice that
as the bar graph (histogram) grows, the vertical scale changes to
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keep the plot on the screen. The computer will run 100 trials of
ten coins each. Record results in your notebook.

. Now choose a new window (choose Coin Flip in the New box

on the control panel).

Click Go and watch the graph grow. To speed up the process,
choose Less Graphics from the Options menu.

Choose the Tile Windows command under the Options menu
and compare the two graphs. (Tile Windows shrinks the win-
dows and places them side by side, so you can view more than
one at a time.) Are the two patterns the same? Can you predict
the shape of the next graph if you make a third run? Try it! Tile
the resulting three displays.

Click on Coin Flip one more time, select 500 for the Number of
Trials under the Experiment menu, and choose Less Graphics
under the Options menu. Press Go.

Select the Tile Windows command under Options to see all of
these results side by side on the screen.

Experiment on your own. Change the number of trials. You can
also change the number of flips per trial with the Number of
Steps command under the Experiment menu. You should now
be able to verify the prediction you made at the end of HandsOn
10. Again, make a prediction about what the graph will look like.

Q3.12: As the number of trials increases how
does the shape of the graph change? Is the
wedth of the distribution greater after a larger
number of trials? Is the bar graph smoother
after 500 trials than after 100 trials?

Q3.13: Does the number of trials or the num-
ber of flips affect the shape of the graph? How?

END ACTIVITY
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3.3 Random Walks

In the preceding section we found that some predictability grows out
of random coin flipping, leading to a “bell-shaped” bar graph of the re-
sults. Such a distribution is also called the normal or Gaussian distribu-
tion (you will encounter this distribution at many places in this book).
This section carries the idea further, relating random coin flipping to
random motion. Random movement is important for understanding
the microscopic world in nature, because atoms and molecules move
randomly. How can we describe the random motion of molecules in,
say, a gas? Molecules are too small to see, so to help us think concretely
we replace a molecule with something we can see: a wandering ant. If
a wandering ant starts at a lamp post and takes steps of equal length
along the street, how far will it be from the lamp post after a certain
number, say N, steps? Though this question is seemingly trivial, it
poses one of the most basic problems in statistical science.!

HandsOn 11: Ten-Step Random Walk

It is easiest to visualize random motion (random walk) along one line,
that is, in one dimension. Call x the position of the ant (i.e., walker)
on a one-dimensional line. Locate the origin, that is x = 0, at the
lamp post. Then let each “step” of the ant—right or left along the
line—be of equal length. One way to picture this is to use one row of
a checkerboard or an enlarged photocopy of Figure 3.4.

Xx=-5 -4 -3 -2 -1 x=0 +1 +2 +3 +4 x=+5

1 [~

" L;mp "Ant"
Post"

Figure 3.4: Diagram of a wandering ant. How many steps do you think
he has already taken if his starting-point was at the “Lamp post”?

'W. Weaver, “Probability,” Scientific American (October 1950); M. Kac, “Prob-
ability,” Scientific American (September 1964); B. H. Lavenda, “Brownian Motion,”
Scientific American (February 1985).
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Choose the direction of the step the ant will take by flipping a
penny:

e If it is a head, the ant steps right and z increases by one.

e If it is a tail, the ant steps left and x decreases by one.

A head or tail is equally likely; therefore it is equally probable that
the ant steps right or left.

Do this activity with a partner. Use a silver-colored coin (nickel,
dime, or quarter) to represent the position of the ant. To begin, put
the “ant” in a center cell (the position of the lamp post). The ant steps
from one cell to the next, right or left randomly, depending on whether
the penny comes up heads or tails, respectively.

1. Flip a penny ten times and move your “ant” accordingly.

2. After ten steps, report the final position of the ant, and whether
it is to the right or to the left of the lamp post.

3. Again, the tally keeper puts a big X on a bar graph of the final
position on the blackboard, as you did in HandsOn 10 (Figure
3.2).

Q3.14: How does your result compare with the
results of HandsOn 10, in which 10 pennies are
flipped at once? Is there a relationship between
these two activities? Notice that in this present
activity the final number of steps is equal to the
number of heads minus the number of tails).

SimuLab 4: One-Dimensional Random Walk

Now do the same activity using the computer.

1. Bring up the Random Walk program and choose Rand Walk
from the New box on the control panel.

END ACTIVITY

The 1-D ran-
dom walk 1is
also available
as a Java ap-
plet.
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2. Take one step at a time by pressing the Flip button.

3. Now make the computer flip coins automatically using the Go
button.

4. Do the 10-step random walk 10 times (see Figure 3.5).

Random Walk

Towx irlalz

Figure 3.5: Distribution resulting from 10-step random walk.

5. Press Coin Flip to start a new screen, select Less Graphics
under the Options menu, and press Go. The program will run
100 trials of 10 steps each.

6. When the 100 trials are finished, do a third 10-step random walk
choosing 500 trials, under the Experimental menu and Less
Graphics under Options.

Q3.15:  Are there any similarities among the
bar graphs in the three runs?
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Q3.16:  Does a larger number of trials make
it easier to describe the shape of the resulting
bar graph?

Q3.17: If you were shown only the bar graph,
could you tell whether it came from the Ran-
dom Walk part of the program or the Coin
Flipping part of the program?

Q3.18: Why are there spaces between the bars
in the bar graph for Random Walks, when

there were no spaces between the bars for Coin
Flip?

Why is the random walker important? One reason the random
walker is important is because it mimics the way a molecule moves.
We want to study not only the motion of a single molecule, but also
the motion of many molecules that combine to form the chemical and
physical processes we observe every day. To do this, we need to watch
many walkers at the same time.

Q3.19: Can you think of scientific or natural
processes whose underlying physical or chemi-
cal dynamics could be described by a random
walk?

3.4 Pascal’s Triangle

Pascal’s Triangle is a different way of representing coin flipping or ran-
dom walk along a line. It can be pictured as a collection of pegs ar-
ranged in a triangle, as in Figure 3.6. Here instead of controlling the
motion of a walker, the coin flip controls whether a ball (a marble)
falling through the pegs moves to the left or right of the peg imme-
diately below it. The same random choice is made each time the ball

END ACTIVITY
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falls to the next lower level. Ten steps for the ant is the same as a drop
of ten levels in Pascal’s Triangle. The result is the same displacement
right or left as in a random walk.

Figure 3.6: Typical distribution of many marbles after falling through
Pascal’s triangle.

SimuLab 5: Random Walk and Pascal’s Triangle
Carry out the following steps with the Random Walk program.

1. Choose Pascal’s Triangle from the New box on the control
panel.

2. Start by doing 100 trials with 10 steps. (If you wish, select Less
Graphics under Options.)

3. Select Tile Windows under Options to place the resulting bar
graph in one corner of the screen (see 3.6).
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4. Start the coin-flipping experiment, run 100 trials, then display the
results in a second tiled window to place it next to the Pascal’s
Triangle results.

5. Finally bring up the 1D Random Walk program, start it doing
100 trials, and show the resulting display in a third tiled window.

Q3.20: Compare the graphs in the three dis-
plays. Are they identical? similar?

Q3.21: If you ran any of the programs twice
in a row, would you get the same result each
time? Similar results each time? If so, what do
you mean by “similar?”

Q3.22: Choose your favorite among the three
“experiments” of the Random Walk program
(Random Walk or Pascal’s Triangle) and
run some trials that help you answer the fol-
lowing questions: How likely is it that a walker
will be at least four spaces away from its start-
ing point (right or left) after taking only four
steps? After taking 8 steps? After taking 12
steps? We need to figure out how this likeli-
hood (probability) changes as the number of
steps changes.

Under the Options menu there is a command called Graph Dis-
placement. For Random Walk and Pascal’s Triangle this inserts
a small graph in the lower right corner of the screen, which you can
move around like any other window. On this graph, the horizontal axis
shows the number of steps and the vertical axis displays the square of
the average distance the walker is from the center after that number
of steps. A green straight line shows the average slope of these data
points.
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Q3.23:  Are the dots more scattered at the
beginning of a run or at the end?

Q3.24:  Are the dots more scattered at the
end of a 10-trial run or at the end of a 100-trial
run?

Q3.25:  If you ran 30,000 trials, guess what
the value of the slope would be?

Q3.26: What is going on? Usually when you
move in a straight line your distance itself (not
its square) increases linearly with time. Is this
case different? If so, how and why?

SimuLab 6: Width of a Distribution

Instead of watching one walker at a time, let’s watch many walkers

at the same time.

Bring up the ManyWalkers program. In this

program you choose the number of walkers displayed, from one walker
to 250 walkers. When you press the Step button, each of these walkers
takes a step randomly, either to the right or to the left. The number of
walkers in each position (left or right of the origin) is shown in the bar
graph at the bottom of the screen.

Q3.27:  Try the display for different numbers
of walkers. How do the results for 40 walkers
differ from the results for 250 walkers? for 1
walker?

Q3.28: Do more walkers result in a wider
spread, for the same number of steps? Do more
walkers result in a smoother graph? Guess:
How many walkers do you think it would take
to yield a perfectly smooth graph?
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Q3.29:  How does the width of the spread
change as the number of steps changes? Is the
width after 12 steps three times the width after
4 steps?

SimuLab 7: Average Position after N Steps

How far from the origin does the wandering ant end up after some
number (N) of steps? What do you guess: after 10 steps is the walker
more likely to be to the right or to the left of its starting point? If
another ant takes 10 steps from the starting point, then another ant,
then another ant, what do you expect their average final position to be
after 10 steps?

Investigate! Go back to the ManyWalkers program and observe
the value of “AVG. z” given at the right of the bar graph. The symbol
x stands for the number of steps a walker is displaced from the initial
position. The value of z is positive if displacement is to the right,
negative if to the left. How does this average change as the number of
steps increases? Is AVG. x bigger for more walkers? Or is it smaller for
more walkers? Press the Store button to record any interesting set of
averages; then press the Table button to examine the data you have
saved.

What does theory have to say about the value of the average position
of many random walkers? Here we are not talking about averaging a
small number of walkers: not 100 walkers, not 1000 walkers, not even
one million walkers. We ask: What is the average position of an infinite
number of walkers? Answer: The value of the average position is zero,
the position of the starting point (the lamp post)! How can this be?
One word gives the reason: Symmetry! In this case symmetry means
that moving right is just as likely as moving left. After any fixed number
of steps, the walker is equally likely to be to the right of the starting
point (positive displacement) as to the left (negative displacement).
Moreover, for a given number of steps, the distance x from the starting
point is likely to have the same value, whether displacement is to the
right (positive z) or to the left (negative x). In brief, averaged over
many millions of trials, the positive displacements cancel the negative

END ACTIVITY
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displacements. Therefore we expect the average of many trials to be
zero; the average position of the walkers is at the starting point.

The average position may be zero, but the spread of positions is
not zero, as shown also by the examples in Figures 3.5 and 3.6. The
number of heads in 10 trials does not always come out the same. The
number of heads can vary in each 10-step trial.

How can this spread of final positions be described? Pascal’s Trian-
gle helps to answer this question. Look at the Pascal Triangle shown
in Figure 3.7. We are going to do something that turns out to be very
useful: Count the number of paths that can lead to each of the pegs in
the 2nd row, the 3rd row, the 4th row, etc.

TOTAL
STEPSN PATHS
0 2
1 4
2 —
3 —
4 —

5

Figure 3.7: Pascal’s Triangle showing the number of paths by which the
falling marble can arrive at each peg. This one is for a 5-step random
walk.

The first two rows are done already. For example, the only way to
get to point D (after 2 steps) is by going left-left (LL). We enter a 1
in circle D, meaning there is only one way to get there. In contrast,
there are two alternative paths to point E, namely left-right (LR) or
right-left (RL). Therefore we enter the number 2 in circle E. How many
paths are there to point F'?7 Now you fill in the next two rows. You
need 3 steps and 4 steps to reach the pegs in these rows, respectively.

Now we state a very important rule. Starting from some initial
point, and for a random choice at each step ...
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every alternative path to a given final point is equally likely.

In other words, two paths are alternative—or different—if any seg-
ment of one path is different from that of the other path.

As an example of the new rule, look at row 3, where the ball arrives
after two steps. There are two paths to central position E, but only
one path to each of the end positions D and F'. The rule above says
that a random walker is twice as likely to end up at the central position
E than at either of the positions D or F.

Is this rule reasonable? We have assumed that as the ball comes
to each peg, it is equally likely to fall to the left of the peg as to the
right. And every possible path is made up of a sequence of these equal
choices. So it is reasonable that every path to a given final point is as
likely as every other possible path to that point.

It is easy to find a rule that allows us to determine how many
(equally likely!) paths lead to a given peg in Pascal’s Triangle: The
number in each circle is the sum of the numbers in the two adjacent
circles above it in the previous row. (For the end circles, the number is
the same as in the one adjacent circle in the row above.) For example,
the number in circle F is 2, equal to the sum of the numbers 1 4+ 1 in
circles B and C' above it. Is this reasonable? Think of paths. There
is 1 possible path leading into B, one possible path leading into C.
Therefore they provide

1+ 1 = 2 possible paths

to circle £ below them.

Use this rule to make entries in the circles of rows 3 and 4 in a copy
of Figure 3.7. Also put numbers in the circles for the fifth row at the
bottom of the figure.

If every alternative path is equally likely, then the more paths that
lead to a given peg, the more likely the ball is to arrive at that peg. For
example, two paths lead to peg E in Figure 3.7, while only one path
leads to each of pegs D and F' in the same row. The total number of
paths that arrive in that row are 1+2+1 = 4 (number at the right side
of the figure). The probability that a ball arrives at peg F is 2/4 = 1/2.
A similar analysis can be applied to a peg in any row of Figure 3.7.
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Using Pascal’s Triangle, we have described the number of different
paths (and relative likelihood, that is, probability) of arriving at any
location (at any circle in the diagram) after a certain number of steps.
The result is too many numbers. It is time to simplify our picture by
using averages.

3.5 Measuring Average Distances

Starting at the lamp post, the ant wanders a certain number of steps,
randomly, to the right and to the left. The ant records its final distance
from the lamp post: positive displacement measured to the right, neg-
ative displacement measured to the left. Then for the second trial the
ant goes back to the lamp post and randomly takes the same number
of steps again, recording its final position. Then a third trial, then a
fourth trial, and so on. Finally the ant calculates the average final dis-
placement from the lamp post from all the trials. What do you expect
the average displacement to be?

We already know the answer: This average final position is zero, the
starting point. This answer is verified by the numbers in the circles of
Pascal’s Triangle (Figure 3.7). For every row (each row representing the
expected displacements after a given number of steps) the numbers in
the circles are the same to the right of the initial position (positive final
displacement) as they are to the left of the initial position (negative final
displacement). In taking the average, final displacements to the right
are typically canceled by final displacements to the left—by symmetry!

Thus zero is the average displacement of the random walker after
many trials, no matter how many steps the walker takes. Yet by ex-
perimenting we know that the spread of final positions increases with
the number of steps. The number of final positions available increases
as the number of steps increases in Pascal’s triangle. That is why the
triangle is wider at the bottom. Notice that after two steps, 2 of the
total of 4 possibilities leaves the ant at its starting point. That’s a 50%
chance. After 4 steps, 6 of the total of 16 possibilities leaves the ant at
the starting point—a decrease to 37.5%.
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Q3.30:  Q30: After 8 steps, what percentage
of the possibilities leaves the ant at its starting
point? What other calculations can we con-
sider that will help us to understand the spread
of final positions?

There are various ways to measure this spread. We would like to
get around the fact that rightward and leftward displacements tend to
cancel one another. One possibility is to average the absolute values
of the displacements. An absolute number is never negative; therefore
when we average the absolute displacements, we will get a result that is
positive (or perhaps zero). This leads to the idea of an average absolute
displacement.

SimuLab 8: Measures of Average Squared Displace-
ment
Return to the ManyWalkers program. This time pay attention to the

value of “AVG. |z|” given at the right of the bar graph. The symbol
|z| stands for “absolute value of z,” or “magnitude of x.”

Q3.31: Does AVG. |z| increase with the num-
ber of steps?

Q3.32: Q32: For a given number of steps, does
AVG. |z| have a larger value for more walkers?

The average absolute displacement is not the measure chosen by
scientists to describe the random walker, because it does not give the
simplest result, as will be shown below. The result is simpler if we take
the square of each displacement and then average these squares. The
square of a number is positive, even when the number itself is negative.
(If the number is zero, its square is also zero.) Therefore the average
of squares of final displacement will never be negative. This average is
called the average squared displacement or mean square displacement.
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Here are the results of an experiment in which 20 ants each took 3
steps:

Number of ants Final displacement
2 -3
9 -1
7 1
2

To find the average square displacement we calculate as follows:

e 2 ants had a squared displacement of (-3)? or 9
e 9 ants had a squared displacement of (-1)? or 1
e 7 ants had a squared displacement of (1)* or 1
(

2
e 2 ants had a squared displacement of (3)? or 9

Averaging we get

2(9) + 9(1) + 7(1) + 2(9)
20

=26

for the average squared displacement. (The average number of steps
does not have to be an integer; if one takes one step and another takes
two steps, the average is 1.5 steps.) This result will naturally be a bit
different for each trial.

Return to the original picture of the wandering ant (Figure 3.4).

1. Start with the ant in the center.

2. Flip a coin and move the ant one step.

3. Record its position (+1 or -1) in a copy of Table 3.2.

4. Now flip the coin again, move the ant, and record its new position.

5. Continue for a total of five steps, recording the ant’s position after
each coin flip.
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10.

Now square the total distance (displacement) from the starting
point after each coin flip.

. We want to graph the average squared displacement versus the

number of steps. Plot your data in a distinctive color on a graph
with number of steps along the horizontal axis and z? along the
vertical axis, where x is the displacement.

Repeat STEPS 1 through 7 using a second ant, again recording
the position after each coin flip.

. This time take the average of the squared displacements of the

two walkers and plot this in another color (green perhaps) on the
graph.

Continue with the third walker, this time taking the average of
the squared displacements of all three walkers after each coin flip.
Plot this in yet another color (maybe blue).

Table 3.2: Computing average of the squared displacement of the ran-
dom walker.

Walker One Walker Two Walker Three
Step|z=| 2°= ||z=|22=| Avez?of |2=|2°= Ave 2% of
walkers walkers
#1 and #2 #1, #2 and #3

Y | W N —

Q3.33:  As more walkers are added, does the
graph of the resulting averages approach a pat-
tern? Using yet another color (black?), draw a

line that shows this pattern.
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Can we make any prediction about the value of the average squared
displacement after many trials? Once more, we can use the computer
to give us many trials.

1. Bring up the ManyWalkers program and look at the value of
“AVG. %" at the right of the bar graph.

2. Try different numbers of walkers and different numbers of steps.

Q3.34: Does AVG. z? increase with number of
walkers, for a given number of steps? In con-
trast, does AVG. z? increase with the number
of steps, for a given number of walkers?

3. Store the data on the table and examine the Table.

4. Call up the Graph.

Q3.35: Do you notice anything which might
help you predict the value of AVG. z2? In par-
ticular, can you predict the value of AVG. z?
for 250 walkers after 30 steps?

Q3.36:  Print out the graph for 250 walkers
taking 30 steps. Then run 40 walkers taking
30 steps and print out the resulting graph. Fi-
nally, run 10 walkers taking 30 steps and print
out the graph. Label these three graphs, lay
them side by side, and compare them. What
accounts for the differences and similarities be-
tween these three graphs?

Predict what you expect the graph to look like when one walker
takes 30 steps. Try it and compare the result with your prediction.
You can watch the change in the graph as the number of trials
increases. To do this, return to the Random Walk program and open
END ACTIVITY the Graph Displacement window.
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3.6 Proving Average Squared Distance
(Optional)

What is the value of the average square displacement of a random
walker after N steps? Here we show two ways to calculate this average
square displacement.

First Method: Average Square Displacement from
Pascal’s Triangle

Look at Pascal’s Triangle, Figure 3.7.

Pick out the row of circles representing displacements after two
steps. A total of 4 paths are available for entering this row (the denom-
inator of the average in the equation below). Two paths lead to zero
displacement, one path leads to a displacement 42, and one path leads
to a displacement —2. Each of these paths is equally likely. In taking
the average of the squares (numerator of the equation below), there is
one entry for (—2)%? = 4, two entries for (0)> = 0, and one entry for
(+2)%. Therefore the average of the square for two steps is:

1(—2)* +2(0)* + 1(+2)* _ 8

4 4

Now calculate the average of the squares of the displacements after

three steps. A total of 8 paths are available for entering this row.

Three paths lead to +1 final displacement. Three paths lead to —1 final

displacement. One path leads to +3 and one path to —3 displacement.

Follow the same steps as above to calculate the average of the squares
of the displacements after three steps:

1(=3)" +3(=1)* + 3(+1)* + 1(+3)* _ 24
8 8

Show that for the row representing displacement after four steps the
average of the squares of the displacements is 4. What is the average
of the squares of the displacements after five steps?

Do you see a pattern? The average of the squares of the final dis-
placements is equal to the number of steps. A graph of the ideal mean
square displacement vs. the number of steps is simply a straight line.

= 2.

=3.
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Second method: Calculating the Average Square
Displacement using Algebra

Notation: Scientists often use the symbol x to represent displacement
along a line, 22 to represent the square of this displacement, a subscript
N to represent “after N steps,” and a bracket ( ) to represent average
value. Then our argument from Pascal’s triangle is that:

(average of the squared displacements after NV steps) = number of steps N,

which is written
((zn)?) = N.

We already obtained this result using Pascal’s Triangle. Next we cal-
culate the same answer using algebra.

Suppose the walker has taken n steps and is now at position z,,.
What do we ezpect the value of ((z,)?) to be? Start by asking where
the walker will be at the next step n + 1. If we know where the walker
is now (i.e., x,) then after the next step the walker can be a step to
the right or a step to the left; either at

Tpy1 = Tp + 1 (step right) (3.1)
or at
Tpyr = Ty — 1 (step left). (3.2)

Which of these will it be? We cannot say for sure. In a random walk
both are equally likely. So we take an average: Square both sides of
Eqgs. (3.1) and (3.2) and take the average of the two. Again, use the ()
bracket to mean average value. Then

(n+ 12+ (zn, — 1)) (22 +2z,+1+4+22 -2z, +1)

(@n1)”) = 2 - 2 )
((raa)) = 2L2E2
(@ne1)?) = (@) + 1. (3.3)

What does this equation mean? Start with n = 0, the zeroth step (or
no step at all). Then ((z)?) = 0. For the first step, Eq. (3.3) tells us
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that ((z1)?) = ((z0)?) +1 =0+1 = 1, which we knew already without
doing this calculation. From this, it follows that ((z9)?) = ((z1)?)+1 =
1+ 1 =2 and {(z3)?) = 3 and, in general {(zy)?) = N. The result?
The average squared displacement after N steps is simply N:

((@n)?) = N.

This is the same result we obtained from studying Pascal’s Triangle.

What we stated above is an ideal average, i.e., an average we would
also obtain over an infinite number of trials. For a finite number of
trials, for example the average of 250 walkers, this is our “best guess”
of the final squared displacement after N random steps along a line.
In general, observed values approach the “best guess” for a very large
number of trials.

3.7 The Wandering Ant on a Square Grid

Suppose that the ant is not forced to step just along a line, but can move
in four mutually perpendicular directions when walking away from the
lamp post. This type of movement is called a 2-dimensional random
walk.

For example, an ant is standing in the center of a 11 by 11 grid, as
shown in Figure 3.8. Each grid square is the size of one step. The ant
can move one step at a time in one of four directions: north, south,
east, or west. The ant cannot move diagonally or take more than one
step at a time. If the ant walks off the edge of the grid, it cannot return.

Q3.37: Where do you think the ant will most
likely be after 10 steps? Will it still be on the
grid?

Q3.38: Where do you think the ant will most
likely be after 100 steps? Will it still be on the
grid?
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N
A

Figure 3.8: The wandering ant in a 2-dimensional random walk.

Q3.39: Let’s say we place 1000 ants on the
center square of the grid. If each ant moves
independently using the same rules as above,
how do you think the ants will be distributed
on the grid after each ant has taken 10 steps?
100 steps? 1000 steps?

Q3.40: Is there a relationship between random
walks and coin flipping? If so, what is this
relationship?

HandsOn 12: Random Walk in 2-Dimensions

For the following activity you will need:

e a checkerboard and one checker,
e two copies of the grid in Figure 3.8, and

e a 4-sided die (or use a regular 6-sided die and throw again when
the result is a 5 or 6).



' and 2-D
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Place a checker in the center of a checkerboard. Flip a four sided
die labeled north, south, east and west and move the “ant” accordingly.
After 10 steps, mark on a copy of the checkerboard the final position
of the random walker. Start again from the center and repeat the same
10-step procedure ten times.

Q3.41:  Measure the distance from the ori-
gin for each random walker after 10 steps and
take the average of all the distances. If sev-
eral groups are doing the same activity, average
your averages. What is your result? Compute
the square of the distance from the origin for
all walkers and take the average. What is your
result?

SimuLab 9: The Deer Program and Population Dy-
namics

The Deer program uses the 2-dimensional random walk to model the
variations that occur in a deer population. A deer moves randomly on a
field, eating the grass wherever it steps. Grass grows back in each eaten
square after a certain amount of time. (Time is measured in steps: in
one time step, every deer takes one random step.)

Will the deer population grow or decline? A deer dies if it takes
a specified number of steps in a row onto squares where the grass has
been eaten and has not yet grown back. Every live deer has an offspring
after another specified number of steps.

1. Bring up the Deer program. On the left you should see the
control window, on the right a green field.

2. After reading the introduction under Describe, create a single
deer by clicking the cursor in the middle of the field.

3. Start the program by clicking on Go.

END ACTIVITY




END ACTIVITY
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4. Select Show Graph under the Control menu. The top portion
of the graph shows the number of deer present in the field; the
bottom portion the percentage of grass still alive on the field.

5. If at any time you want to stop the program, press the Pause
button.

Q3.42: What happens to the size of your deer
population? Does it grow and grow? Does it
increase, then decrease? Does it die out?

Q3.43: Suppose you started again with a deer
in exactly the same position. Would the popu-
lation at every step of the second run be exactly
the same as the first? Would the final result be
the same?

Now you are going to place a dozen deer in the field and let the
program run as before. Before doing this, write down your predictions
about what will happen:

Will the initial population growth be different for 12 deer than for
one deer? Will the final outcome be different for 12 deer than for one
deer?

Now start the program as before, but this time click at a dozen
different points on the field. Then start the program by clicking outside
the field.

Q3.44: What happens to a deer that wanders
off, say, the right-hand side of the field?

Q3.45:  Q45: Look back at your predictions
for 12 deer. Were your predictions correct?
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3.8 Models in Science

In this book, the words science, scientist, and scientific added together
appear only a total of 80 times. On the other hand the word fractal
appears 160 times, and the word model a whopping 250 times. Appar-
ently the word “model” is of key importance when we do science.

In Chapter 1 we read “Now we use a computer to draw the model of
a coastline and to measure the dimension of that model,” and “...you
created a model of a fractal coastline using a rubber band, thumb tacks,
and a die (or a rope, a die, and a coin).” In Chapter 2 (this chapter) we
have used a simple, one-dimensional random walk model to understand
random motion in general. As we progress through the book we will
encounter the word again and again:

e “Other random fractal patterns also have dimensions between 1
and 2: a snowflake, a nerve cell, a lightning stroke. The growth of
these structures can be modeled by a process called aggregation
... In the following activity you will use a 2-dimensional random
walk to mimic (model) the aggregation process.” (Chapter 3)

e “Any good model is much simpler than the phenomenon, but it
reproduces the essential features of the phenomenon ... under-
standing in science grows as we progress from model to model.”

(Chapter 4)

e “In order to build a mental model to analyze the bacteria experi-
ment, you need certain facts about bacteria and their behavior.”
(Chapter 5)

This is only a sampling of what appears throughout this book. Sim-
ilar examples exist in every chapter. Generally speaking, the purpose
of a model s to simplify reality so that reality can be analyzed. If a
model is only partially successful in predicting behavior, we attempt to
modify the model and improve its assumptions so that its predictions
will be more accurate. This process tends to generate models that are
increasingly complex, models that provide further challenge to scientific
investigation.
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3.9 What Do You Think?

Q3.46: Describe in your own words the meaning of a model?
Can you think of examples of how models are used to de-
scribe nature?

Q3.47: In this chapter we have used a very simple model:
an ant wandering back and forth with steps of equal length
taken at equal time intervals. Yet this simple model de-
scribes many processes in the real world. How can this be,
since our model is so simple? Very similar results are pre-
dicted by more complicated models that add more random-
ness: steps of random length, steps in random directions,
steps that take place randomly in time. It turns out that
the predictions of these more complicated models are sim-
ilar to ours as long as our model reflects the average step
length, average time between steps, and average distance
from the starting point. Often in science a simple, easily
understood model makes good predictions about the more
complicated real world.

(Q3.48: Does changing the number of steps the random walk
takes effect the relation between “mean squared distance”
and “step number”? Does it change the “average distance”
from the origin?

QQ3.49: Why would we care about being able to relate “mean
squared distance” and “step number”? What does this tell
us? Hint: think in terms of “predicting”.

Q3.50: Can you think of examples from nature where par-
ticles may move around in a random way? List examples
from nature where the random motion is biased. Can you
list some of the possible sources of the bias (e.g., draft air
currents would bias the smell of the unstoppered ammonia
bottle)?
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Research Projects

Try the suggestion below, design your own, or write an essay using any
of the questions throughout this chapter as inspiration.

Suggested Project: Bring up the Deer program again. Change the
parameters in the Control menu.

The Size of a Deer (in screen pixels) determines how big the
field is: Smaller deer means smaller squares on a field of constant
size, and so a field that can accommodate more steps, more grass
plots, and more deer.

A deer dies if it fails to step on a green square for a number of
steps greater than the setting of the Number of steps without
food.

The Time of grass restoration is the number of steps required
before grass is restored to an “eaten” square.

The Breeding age of deer is the number of step-cycles after
birth at which a live deer has an offspring. Every live deer has
one offspring every time it takes this number of steps.

Your first task is to find a combination of these settings such that
the population of deer reaches a constant value and stays there—more
or less! This is called a stable population. Be systematic about the
search, writing down in your notebook each setting and the population
outcome. Is there more than one combination of settings that achieve
this goal? If so, is there a pattern of such settings?

Your next tasks are to find (i) which changes in the settings from
this stable condition result in a more or less steady increase in popula-
tion, and (ii) which changes result in a more or less steady decrease in
population. Is there a pattern to these changes? Can you find changes
that lead to an oscillating population, one that increases and decreases
rhythmically or erratically?

How would adding a predator complicate the problem and change
the outcome? A predator, such as a wolf, eats deer, has baby predators,
and dies if it does not meet a deer after a given number of steps.

Research
projects
can be pub-
lished on our
Web site.
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